30 research outputs found

    A simple solution to mitigate noise effects in time-redundant sequences of small baseline multi-look DInSAR interferograms

    Get PDF
    We present a simple and effective filtering algorithm to mitigate noise effects in a time-redundant sequence of multi-look small baseline (SB) differential synthetic aperture radar (SAR) interferograms by exploiting the temporal relationships among the selected interferometric data pairs. The proposed method relies on the estimation of the (wrapped) filtered phase terms associated to each SAR acquisition; this result is achieved via a non-linear minimization procedure which is applied to the phase signal of conventional multi-look interferograms without any pixel selection process, and with no a-priori information on the statistics of the involved complex-valued SAR images. Following their estimation, the phase images are paired to reconstruct a new sequence of filtered SB differential interferograms, which are used to generate surface deformation products, such as deformation velocity maps and displacement time-series. The filtering algorithm effectiveness is demonstrated by analysing a set of SAR images..

    Joint exploitation of space-borne and ground-based multitemporal InSAR measurements for volcano monitoring: The Stromboli volcano case study

    Get PDF
    Abstract We present a joint exploitation of space-borne and ground-based Synthetic Aperture Radar Interferometry (InSAR) and Multi Temporal (MT) InSAR measurements for investigating the Stromboli volcano (Italy) deformation phenomena. In particular, we focus our analysis on three periods: a) the time interval following the 2014 flank eruption, b) the July–August 2019 eruption and c) the following post-eruptive phase. To do this, we take advantage from an unprecedented set of space-borne and ground-based SAR data collected from April 2015 up to November 2019 along two (one ascending and one descending) Sentinel-1 (S-1) tracks, as well as, in the same period, by two ground-based systems installed along the Sciara del Fuoco northern rim. Such data availability permitted us to first characterize the volcano long-term 3D deformation behavior of the pre-eruptive period (April 2015–June 2019), by jointly inverting the space-borne and ground-based InSAR measurements. Then, the GB-SAR measurements allowed us to investigate the sin-eruptive time span (3rd July 2019 – 30th August 2019) which revealed rapid deformation episodes (e.g. more than 30 mm/h just 2 min before the 3rd July 2019 explosion) associated with the eruptive activity, that cannot be detected with the weekly S-1 temporal sampling. Finally, the S-1 measurements permitted to better constrain the post 2019 eruption deformations (31st August 2019 – 5th November 2019), which are mainly located outside the GB-SAR sensed area. The presented results demonstrate the effectiveness of the joint exploitation of the InSAR measurements obtained through satellite and terrestrial SAR systems, highlighting their strong complementarity to map and interpret the deformation phenomena affecting volcanic areas

    Automatic generation of co-seismic displacement maps by using Sentinel-1 interferometric SAR data

    Get PDF
    Abstract We present a tool for the automatic generation of co-seismic Differential Synthetic Aperture Radar Interferometry (DInSAR) products by using space-borne SAR data. In particular, the implemented tool relies on the large availability of Sentinel-1 SAR data and on-line earthquake catalogues (e.g. USGS, INGV) to generate co-seismic Line Of Sight (LOS) interferograms and displacement maps. The processing is triggered by the occurrence of a main seismic event, according to the accessible earthquake catalogues. The tool automatically retrieves all the needed SAR acquisitions that cover a defined area across the epicentre and generates the DInSAR products that will be then openly available through the European Plate Observing System (EPOS) portal. Moreover, the possibility to implement the presented tool into the upcoming Copernicus Data and Information Access Services (DIAS) will significantly reduce the product processing time, thus implying a faster product generation and delivery. Accordingly, such a tool not only will contribute to expand the use of DInSAR products in the geoscience field, but also will play a key role on the support of the Civil Protection authorities during the management of seismic crisis

    Phosphodiesterases S-sulfhydration contributes to human skeletal muscle function

    Get PDF
    The increase in intracellular calcium is influenced by cyclic nucleotides (cAMP and cGMP) content, which rating is governed by phosphodiesterases (PDEs) activity.Despite it has been demonstrated a beneficial effect of PDEs inhibitors in different pathological conditions involving SKM, not much is known on the role exerted by cAMP-cGMP/PDEs axis in human SKM contractility. Here, we show that Ssulfhydration of PDEs modulates human SKM contractility in physiological and pathological conditions. Having previously demonstrated that, in the rare human syndrome Malignant Hyperthermia (MH), there is an overproduction of hydrogen sulfide (H2S) within SKM contributing to hyper-contractility, here we have used MH negative diagnosed biopsies (MHN) as healthy SKM, and MH susceptible diagnosed biopsies (MHS) as a pathological model of SKM hypercontractility. The study has been performed on MHS and MHN human biopsies after diagnosis has been made and on primary SKM cells derived from both MHN and MHS biopsies. Our data demonstrate that in normal conditions PDEs are S-sulfhydrated in both quadriceps' biopsies and primary SKM cells. This post translational modification (PTM) negatively regulates PDEs activity with consequent increase of both cAMP and cGMP levels. In hypercontractile biopsies, due to an excessive H2S content, there is an enhanced Ssulfhydration of PDEs that further increases cyclic nucleotides levels contributing to SKM hyper-contractility. Thus, the identification of a new endogenous PTM modulating PDEs activity represents an advancement in SKM physiopathology understanding

    Anomalous Kv 7 channel activity in human malignant hyperthermia syndrome unmasks a key role for H2 S and persulfidation in skeletal muscle.

    Get PDF
    BACKGROUND AND PURPOSE: Human malignant hyperthermia (MH) syndrome is induced by volatile anaesthetics and involves increased levels of cystathionine β-synthase (CBS)-derived H2 S within skeletal muscle. This increase contributes to skeletal muscle hypercontractility. Kv 7 channels, expressed in skeletal muscle, may be a molecular target for H2 S. Here, we have investigated the role of Kv 7 channels in MH. EXPERIMENTAL APPROACH: Skeletal muscle biopsies were obtained from MH-susceptible (MHS) and MH-negative (MHN) patients. Immunohistochemistry, RT-PCR, Western blot, and in vitro contracture test (IVCT) were carried out. Development and characterization of primary human skeletal muscle cells (PHSKMC) and evaluation of cell membrane potential were also performed. The persulfidation state of Kv 7 channels and polysulfide levels were measured. KEY RESULTS: Kv 7 channels were similarly expressed in MHN and MHS biopsies. The IVCT revealed an anomalous contractility of MHS biopsies following exposure to the Kv 7 channel opener retigabine. Incubation of negative biopsies with NaHS, prior to retigabine addition, led to an MHS-like positive response. MHS-derived PHSKMC challenged with retigabine showed a paradoxical depolarizing effect, compared with the canonical hyperpolarizing effect. CBS expression and activity were increased in MHS biopsies, resulting in a major polysulfide bioavailability. Persulfidation of Kv 7.4 channels was significantly higher in MHS than in MHN biopsies. CONCLUSIONS AND IMPLICATIONS: In skeletal muscle of MHS patients, CBS-derived H2 S induced persulfidation of Kv 7 channels. This post-translational modification switches the hyperpolarizing activity into depolarizing. This mechanism can contribute to the pathological skeletal muscle hypercontractility typical of MH syndrome

    The August 2019 Piton de la Fournaise (La Réunion Island) Eruption: Analysis of the Multi-Source Deformation Pattern Detected through Sentinel-1 DInSAR Measurements

    No full text
    Piton de la Fournaise is one of the most active worldwide volcanoes, located on the southeastern part of La Réunion Island. In this work, we focus on the eruption that occurred on the southeastern flank of this volcano, inside the Enclos Fouqué caldera, from 11 to 15 August 2019. This distal event was characterized by the opening of two eruptive fissures and accompanied by shallow volcano–tectonic earthquakes. We exploit the ground displacements using Sentinel-1 Differential Interferometric Synthetic Aperture Radar (DInSAR) measurements, which include the ground deformations generated during both the pre- and co-eruptive phases. To investigate the sources responsible for the detected ground displacements, we perform an analytical modeling of the retrieved DInSAR measurements. Our results reveal the presence of five volcanic sources (i.e., one sill-like source and four dikes), whose concomitant action during the pre- and co-eruptive phases generated the complex detected deformation pattern. The retrieved volcanic sources correlate well with the location of the opened fissures, the spatial distribution and the temporal evolution of the recorded seismicity, and other geophysical evidence already known in the literature
    corecore